Nitrogen fixation in grasses - gluconacetobacter activates genes in sugarcane

نویسندگان

  • Thais LG Carvalho
  • Emília Pires
  • Rodrigo Saraiva
  • Lívia Vargas
  • Ana Carolina JS Bomfim
  • Helkin Ballesteros
  • José Ivo Baldani
  • Paulo CG Ferreira
  • Adriana S Hemerly
چکیده

Nitrogen-fixing bacteria have been isolated from sugarcane (Saccharum spp.) and other grasses in an endophytic and beneficial interaction that promotes plant growth. In this interaction, bacteria colonize the intercellular spaces and vascular tissues of most plant organs without causing disease symptoms. The best characterized sugarcane endophytic diazotrophs are Gluconacetobacter diazotrophicus, clustered in the alpha subclass of Proteobacteria, and Herbaspirillum seropedicae, Herbaspirullum rubrisubalbicans and Burkholderia sp, clustered in the beta subclass of the Proteobacteria (Reis et al. 2000). These particular types of endophytic plant growth promoting bacteria (PGPB) can offer several benefits to host plants such as to provide nitrogen trough Biological Nitrogen Fixation (BNF) and to produce plant growth hormones (eg. auxins and gibberellins), promoting plant development, increase in biomass, defense against pathogens and tolerance to abiotic stresses [1,2]. In Brazil, BNF plays a fundamental role in sugarcane cultivation by reduction of the use of nitrogen fertilizers, making Brazilian sugarcane culture more competitive in global markets. It has been suggested that the relatively low mineral N-inputs used for Brazilian sugarcane production over the last 100 years has historically selected for varieties with a low response to applied mineral N and a high N2-fixing ability [3]. Studies on the quantification of BNF to the Brazilian sugarcane varieties, using 15N isotope dilution and 15N natural abundance, have demonstrated that the amount of fixed N2 can be highly variable. Very large BNF-inputs were observed in several sugarcane varieties, especially the wild noncommercial species Krakatau (Saccharum spontaneum) used in plant breeding in Brazil, as well as the commercial varieties SP 70-1143 and CB 45-3, that exhibit high yields in lowfertility soils. SP70-1143 could obtain 72% of N-requirement from BNF, while Chunee (Saccharum barberi), a wild noncommercial species, obtained only 14% [3,4]. An important biotechnological challenge of this century is to develop tools to apply for a sustainable agriculture, that would increase productivity using less fertilizers, pesticides, water and cultivated area. The associations that occur between sugarcane and other grasses with nitrogenfixing endophytic bacteria have raised a large interest in their use in agriculture, in view of the positive effects on root development, and the increase in biomass and productivity. Experiments carried out at EMBRAPA Agrobiologia have shown significant results in biomass increase and grain yield due the use of diazotrophic endophytic bacteria inoculation in sugarcane, maize and rice inoculants. However, studies have also shown that the plant genotype and the environment where the association is established can influence the degree of beneficial results obtained by the plant caused by the association with endophytic bacteria. This plant / nitrogen-fixing endophytic bacteria interaction represents a novel system of beneficial plantmicroorganism association, which has unique features that remain to be characterized. The studies on BNF quantification have indicated that the selection of the best combination of endophytic diazotroph strains as well as sugarcane varieties needs to be exploited to obtain the maximum benefit from this association in agriculture. The signaling pathways by which sugarcane plants can decipher bacterial signals and respond properly for a successful association, by controlling endophyte recognition, colonization and nitrogen fixation rates, are still not clearly understood. Therefore, the major goal of our research is to develop biotechnological tools to help to obtain novel plant varieties more responsive to bacteria Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, 21.941-590, Rio de Janeiro, RJ, Brazil Full list of author information is available at the end of the article Carvalho et al. BMC Proceedings 2014, 8(Suppl 4):O20 http://www.biomedcentral.com/1753-6561/8/S4/O20

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes.

Gluconacetobacter diazotrophicus is an endophyte of sugarcane frequently found in plants grown in agricultural areas where nitrogen fertilizer input is low. Recent results from this laboratory, using mutant strains of G. diazotrophicus unable to fix nitrogen, suggested that there are two beneficial effects of G. diazotrophicus on sugarcane growth: one dependent and one not dependent on nitrogen...

متن کامل

Identification of three genes encoding P(II)-like proteins in Gluconacetobacter diazotrophicus: studies of their role(s) in the control of nitrogen fixation.

In our studies on the regulation of nitrogen metabolism in Gluconacetobacter diazotrophicus, an endophytic diazotroph of sugarcane, three glnB-like genes were identified and their role(s) in the control of nitrogen fixation was studied. Sequence analysis revealed that one P(II) protein-encoding gene, glnB, was adjacent to a glnA gene (encoding glutamine synthetase) and that two other P(II) prot...

متن کامل

Evaluation of the Biological Nitrogen Fixation Contribution in Sugarcane Plants Originated from Seeds and Inoculated with Nitrogen-fixing Endophytes

The inoculation technique with endophytic diazotrophic bacteria in sugarcane has been shown as an alternative practice to plant growth promotion. The aim of this work was to evaluate the biological nitrogen fixation (BNF) contribution by different strains of Herbaspirillum seropedicae and Gluconacetobacter diazotrophicus in sugarcane plant inoculated from seeds. The seeds were planted in pots f...

متن کامل

Characterization of a major cluster of nif, fix, and associated genes in a sugarcane endophyte, Acetobacter diazotrophicus.

A major 30.5-kb cluster of nif and associated genes of Acetobacter diazotrophicus (syn. Gluconacetobacter diazotrophicus), a nitrogen-fixing endophyte of sugarcane, was sequenced and analyzed. This cluster represents the largest assembly of contiguous nif-fix and associated genes so far characterized in any diazotrophic bacterial species. Northern blots and promoter sequence analysis indicated ...

متن کامل

Nitrogen Fixation Associated with Sugarcane

Nitrogen fixation associated with sugarcane was monitored ushg acetylene reducti,on tests and bacteriological techniques. Soil cores and trash from cane fields showed acetylene reducing activity. This activity was usually low in association with sandy soils. Where high activity was detected in soil cores it correlat~d with the wet weight of roots in each core. Nitrogen-fixing bacteria resemblin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014